Proprioreceptive illusions

Sense of body movement and position in space

Tendon and spindle model

http://www.angeltear.com/spindle/

Proprioreceptive ilusions

Various vibrations inducted illusions

For example, vibration of the biceps brachii of the arm leads to the forearm feeling more extended than it actually is . When postural muscles are vibrated, various illusions of body motion can be elicited. For example, simultaneous vibration of the Achilles tendons of a standing subject restrained in position will cause the subject to experience forward pivoting in pitch about the ankles. The subject, if in total darkness, will exhibit nystagmoid eye movements with the slow phase compensatory for the direction of apparent self-displacement. If a visual target is presented for the subject to fixate, it will be seen to move in the direction of apparent self-motion and to displace ahead of the subject in the same direction . Thus, the visual target motion has the same characteristics as the oculogyral illusion described above, and a similar physiological explanation in terms of suppression of involuntary eye movements can account for its properties. Vibration of neck muscles leads to illusions of head rotation and displacement In fact, with vibration of the appropriate skeletal muscles, apparent motion and displacement of the body or its segments can be elicited in virtually any desired configuration. If visual or auditory targets are present, their positions also are remapped in the direction of apparent body motion and displacement. For example, when a small target light is attached to the hand and illusory motion of the restrained forearm is elicited by vibration of the biceps brachii or triceps muscles, the target light will be seen to displace physically in the direction of the apparent motion of the hand. This phenomenon is known as the oculobrachial illusion .

perp_to_biceps.jpg

Pinocchio’s Effect

176016_xcitefun-8-confuse-your-proprioreception.jpg

Propriroceptive laterization

The nondominant arm (the left for most people) was better at matching positions. Furthermore, the left arm/right brain superiority grew with the difficulty of the task.When visual cues were provided. As expected, the dominant arm excelled, but when only proprioception was allowed, the nondominant arm won every time.